
1

Building an Experience Factory for Maintenance

Jon D. Valett
Software Engineering Branch

NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Steven E. Condon
Computer Sciences Corporation

10110 Aerospace Road
Lanham-Seabrook, Maryland 20706

Lionel Briand, Yong-Mi Kim, Victor R. Basili
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Abstract

This paper reports the preliminary results of a study of the software maintenance
process in the Flight Dynamics Division (FDD) of the National Aeronautics and
Space Administration/Goddard Space Flight Center (NASA/GSFC). This study is
being conducted by the Software Engineering Laboratory (SEL), a research
organization sponsored by the Software Engineering Branch of the FDD, which
investigates the effectiveness of software engineering technologies when applied to
the development of applications software.

This software maintenance study began in October 1993 and is being conducted
using the Quality Improvement Paradigm (QIP), a process improvement strategy
based on three iterative steps: understanding, assessing, and packaging. The
preliminary results presented in this paper represent the outcome of the
understanding phase, during which SEL researchers characterized the maintenance
environment, product, and process.

Findings indicate that a combination of quantitative and qualitative analysis is
effective for studying the software maintenance process; that additional measures
should be collected for maintenance (as opposed to new development); and that
characteristics such as effort, error rate, and productivity are best considered on a
ÒreleaseÓ basis rather than on a project basis. The research thus far has documented
some basic differences between new development and software maintenance. It
lays the foundation for further application of the QIP to investigate means of
improving the maintenance process and product in the FDD.

Introduction

Goddard Space Flight Center (GSFC) manages
and controls NASAÕs Earth-orbiting scientific
satellites and also supports Space Shuttle
flights. For fulfilling both these complex mis-
sions, the Flight Dynamics Division (FDD)
developed and now maintains over 100 differ-
ent software systems, ranging in size from 10
thousand source lines of code (KSLOC) t o
250ÊKSLOC, and totaling 4.5 million SLOC.
Of these systems, 85% are written in
FORTRAN, 10% in Ada, and 5% in other

languages. Most of the systems run on IBM
mainframe computers, but 10% run on PCs or
UNIX workstations.

The Software Engineering Laboratory (SEL)
has been researching and experimenting in the
FDD since 1976 with the goal of understand-
ing the software development process in this
environment; measuring the effect of soft-
ware engineering methodologies, tools, and
models on this process; and identifying and
applying successful practices (Reference 1).
The SEL has developed an approach to proc-
ess improvement known as the Quality

2

Improvement Paradigm (QIP) and has
established a supporting organizational struc-
ture, the Experience Factory, for maintaining
the experience base, which is a key element of
this work. These concepts, and their applica-
tion specifically in this study of software
maintenance are described in detail in Sections
1 and 2 of this paper.

One of the key features of this research is the
combination of qualitative and quantitative
approaches used to characterize the current
practice of software maintenance in the FDD.
These methods affected the design of the
experience base developed for the study, by
influencing which maintenance products and
projects would be examined and which specific
measures would be collected. The structure of
the study is described in SectionÊ3. Sections 4
and 5, respectively, elaborate on the qualita-
tive analysis of the maintenance process and
the quantitative analysis of the product and
process characteristics. Section 6 discusses
lessons learned and early recommendations
for process improvement, and Section 7 poses
questions that will guide future direction for
this research.

1. The Quality Improvement
Paradigm

The QIP is a three-step iterative process that
provides an organization with a framework
for continuously improving its methods of
doing business. These steps−understanding,
assessing, packaging−are shown in Figure 1.

The QIP begins with understanding, because
before an organization can begin planning for
improvement, it must thoroughly understand
its current processes, products, and environ-
mental characteristics. At the current time,
the FDD maintenance study is completing its
first pass through this step.

During the second phase of the maintenance
study, corresponding with the assessing step
of the QIP, improvement goals will be set,
experiments conducted, and their results
assessed. The experiments will test new
methods or tools that show promise of help-
ing this organization achieve its improvement
goals. If these experiments demonstrate
significant improvements in the process or

products, these lessons will be incorporated
into the overall FDD organization.

This third and final phase of the QIP, the
packaging step, requires significant invest-
ment to truly capitalize on the time and
money spent in the understanding and assess-
ing steps. It may require developing new
standards as well as implementing and fielding
comprehensive training in these new
standards.

After completing the packaging step,
researchers will baseline the new process by
returning to the understanding step, to verify
the positive effect of process evolution on
the system. Thus begins a new iteration of
the QIP.

1.1 The QIP and Software
Development Projects

The QIP has been used many times within the
SEL to investigate the potential of new tools
or processes on software development proj-
ects. In its more detailed application, the QIP
consists of six steps (ReferenceÊ2):

1. Characterize the current project and its
environment with respect to models and
measures. Begin by characterizing the
development project relative to the envi-
ronment. What kind of product is being
developed? How large is the project?
What is the schedule? How is the project
similar to and different from previous
projects? This is used to provide models
of similar experiences from similar
projects.

2. Set quantifiable goals for successful project
performance and improvement. Is the
goal to shorten cycle time, reduce errors,
achieve higher software reuse?

Understanding

Assessing

Packaging

goals

goals

Figure 1. Quality Improvement Paradigm

3

3. Choose an appropriate process model and
supporting methods and tools for this
project. Choose processes for the project
that show promise of achieving the stated
goals based upon past experience with
projects of this type. Identify projects
with similar characteristics and similar
goals.

4. Execute the processes, construct the
products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action.

5. Analyze the data to evaluate the current
practices, determine problems, record
findings, and make recommendations for
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-
tured knowledge gained from this project
and prior projects. Save it in an experi-
ence base to be reused on future projects.

1.2 The QIP and Software
Maintenance

For maintenance, the implementation of the
QIP is slightly different, because past releases
of the same project provide additional experi-
ence. The underscored phrases below indicate
maintenance-specific foci of the QIP.

1. Characterize the current project release
and proposed set of modifications and its
environment.

2. Set quantifiable goals for successful project
performance and improvement and the
future evolution of this product. Remem-
ber that this release will soon be followed
by another release and yet another
release.

3. Choose an appropriate process model and
supporting methods and tools for this
project based on both domain class and
specific product knowledge. When study-
ing maintenance, there is an advantage
over applying the QIP to new devel-
opment projects because knowledge and
experience are available about this specific
product.

4. Execute the processes, construct the
products, collect and validate the pre-
scribed data, and analyze them to provide
real-time feedback for corrective action,
including real-time preventive mainte-
nance on the current project.

5. Analyze the data to evaluate the current
practices and their effects on this product.
Characterize the current product, deter-
mine problems, record findings, and make
recommendations for this product and
future project improvements.

6. Package the experience as updated and
refined models and other forms of struc-
tured knowledge gained from this project
and prior projects. Save it in an experi-
ence base for future projects and the evo-
lution of this product.

2. The Experience Factory

The SEL researchers and database team act as
an experience factory for the software devel-
opers in the FDD (ReferenceÊ3). The experi-
ence factory organization is separate from the
project organization. It serves the project
organization by analyzing and synthesizing
knowledge into models that support the
improvement of software development (see
FigureÊ2). It does so by concentrating on the
analysis and packaging activities of the QIP,
while the project organization focuses on
developing the software. The project organi-
zation supplies process and product data t o
the experience factory and carries out
experiments under the guidance of the experi-
ence factory team. The experience factory
collects and analyzes the data from the proj-
ect organization. It stores these data and
analyses in an experience database. It also
packages the best of these experiences into
products, guidelines, and models, which it
feeds back to the project organization to help
improve its process.

The experience factory for maintenance
operates the same as the experience factory
for development, with three differences:
First, the experience factory for maintenance

4

must address releases. Second, analysis for
release feedback requires quicker response;
development life cycles are on the order of
18−24Êmonths, whereas maintenance release
cycles are on the order of 6Êmonths. Third,
software maintenance emphasizes product
evolution more than software development
does, so experience includes past experience
on the same project.

3. Building the Experience Base for
Software Maintenance

Because there are many similarities between
software development and software mainte-
nance, the SEL experience of software devel-
opment was used as a starting point for
understanding maintenance. The measure-
ment program for maintenance was modeled
on the measurement program that is used for
understanding software development. This
influenced both the goals that were set and
also the specific data that were identified for
collection. To characterize the process, data
were collected on maintenance effort distribu-
tion by activity, similar to the measures col-
lected for new development, with some
tailoring for maintenance-specific activities.
To characterize the products, data were col-
lected on a number of measures, including the

amount of code modified for a release and the
number of errors introduced by the mainte-
nance work. The specific measures are dis-
cussed in more detail below.

The study team consisted of a team leader
from NASA, three researchers from the Uni-
versity of Maryland, and one researcher from
Computer Sciences Corporation. The team
leader drew up the initial study plan contain-
ing the overall goals, the specific questions t o
be answered, and the list of maintenance
measures to be collected for analysis. Data
were collected on eleven maintenance proj-
ects. In addition, researchers closely moni-
tored four of these projects and stayed in
close contact with the maintenance teams on
those projects. The entire study team met
regularly throughout the study to refine the
study plan and assess progress. These meet-
ings also resulted in some revisions to the
collected measures.

Following the lead of Lionel Briand, one of
the University of Maryland researchers, a
general qualitative analysis methodology was
adopted, tailored, and applied to the four
closely monitored maintenance projects
(ReferenceÊ4). This methodology provided an
objective but qualitative project characteriza-
tion that complemented the quantitative

products, data, ...

direct project/

release feedback

products, lessons learned, models, ...

project/release

characteristics

models, baselines,
tools, consulting, ...

Project
Organization

Package
Experience

Base

Analysis

Project/
Release
Support

Experience Factory

FigureÊ2. The Experience Factory

5

characterization that was provided by the
measurement data. By supplying the
researchers with a characterization of the
organization structures, processes, issues, and
risks of the maintenance environment, the
qualitative analysis also helped them refine
the data collection measures. In return, the
quantitative data helped researchers t o
understand the qualitative data. This qualita-
tive analysis methodology also provided a
process for determining the causal links
between maintenance problems, on the one
hand, and flaws in the maintenance process or
maintenance organization, on the other hand.
The following two sections describe the com-
bined qualitative and quantitative approach in
detail.

4. Six-Step Process to Qualitative
Understanding

The qualitative analysis methodology con-
sisted of six steps, depicted in Figure 3.
Researchers accomplished each step by
reviewing release documents and process
description documents, and also by inter-
viewing maintenance team members.

StepsÊ1 through 3 provided an understanding
of the maintenance organization and the
release process followed by the project. With

this information for several projects,
researchers were able to draw comparisons
between projects and to check each project
for adherence to maintenance policies.
StepsÊ4 through 6 provided the mechanism for
identifying where problems existed for each
project and for demonstrating flaws in the
maintenance organization or the maintenance
process (as followed by the project).

4.1 Understanding Steps (1-3)

StepÊ1 called for identifying the organiza-
tional entities involved in the maintenance
process. Researchers identified distinct teams,
their roles, and the information flows among
these teams. For example, for each project,
release approval passed from the configura-
tion control board to the maintenance team.

In StepÊ2, researchers identified the phases of
the release process and the major milestones
that bounded these phases. For example, the
change analysis phase culminated in the
Release Contents Review meeting, and the
solution analysis & design phase culminated
in the Release Design Review meeting.

StepÊ3 required identifying the activities
involved in each phase. Researchers selected
a list of generic maintenance activities and

Step 1:

Identify
organizational

entities

Step 2:

Identify
phases

Step 3:

Identify
activities

involved in
each phase

Step 4:

Select one or
more past

release(s) for
analysis

Step 5:

Analyze the
problems that

occurred in
past release(s)

Step 6:

Establish
frequency and
consequences

of flaws in
process and
organization

Understanding Steps Analysis Steps

Figure 3. Qualitative Approach to Understanding

6

mapped them into the various phases identi-
fied in StepÊ2. In StepÊ3, researchers also iden-
tified the inputs and outputs for each phase.
For example, in one project, the solution
analysis & design phase activities included
release scheduling and planning, understanding
the requirements of changes, changing the
designs, some coding, and some quality assur-
ance. Inputs included the Release Contents
Review document; offline discussions among
maintainers, users, analysts, and testers; and
answers to formal questions submitted t o
analysts. The outputs included the prelimi-
nary designs, test plans, prototypes, release
schedule, and size estimates.

4.2 Analysis Steps (4-6)

In StepÊ4, researchers chose a previous soft-
ware maintenance release for analysis.
Researchers took care to select a recent
release, so that the studied release reflected
the current process, and so that complete
release documentation was available. This
choice also made it more likely that the tech-
nical lead from the release would be accessible
for interviews.

In StepÊ5, researchers studied the release
documentation and interviewed the appropri-
ate parties to define and analyze the problems
encountered in developing this release. For
each software change request in the release,
researchers determined the size of the change,
assessed the relative difficulty of the change,
and identified any errors or delays that
resulted from implementing this change
request. If errors or delays resulted from this
work, researchers then attempted to deter-
mine the maintenance process flaws (if any)
that caused these. For example, in one proj-
ect, a change request for a major enhance-
ment resulted in 11 subsequent errors,
substantial rework, and up to 1 month of lost
effort on the release. The errors stemmed
initially from incomplete or ambiguous
change requirements written by the users.
The maintainers designed the enhancement
based on these written requirements. The fact
that the requirements were deficient and that
design nevertheless proceeded on the
enhancement, was judged by researchers t o
represent a maintenance process flaw. The

effect of this flaw, however, was then com-
pounded by a subsequent lack of communica-
tion between the users and maintainers. The
users neglected to attend the Release Contents
Review and then voiced no objections to the
design presented by the maintainers at the
Release Design Review. When later, at the
Release Acceptance Test Readiness Review,
the users finally objected to the implementa-
tion of the enhancement, much time had been
lost. This lack of communication revealed
either an unclear definition of release respon-
sibilities or a lack of adherence to the defined
responsibilities.

In StepÊ6, researchers assessed the frequency
and the consequences of flaws in the mainte-
nance process and organization as provided by
the data gathered in StepÊ5, and made recom-
mendations for improvements to the process.
For this study, the analysis led to three
recommendations: 1)Êprovide guidelines for
content and format of change requests;
2)Êexplicitly define the content of documents
and review materials; 3)Êenforce stricter
adherence to the maintenance process, espe-
cially attendance at review meetings and
review/approval of designs.

5. Quantitative Approach to
Understanding

In past studies of development projects,
tracking the developersÕ estimates of effort,
product size, and schedule has been useful, so
similar data were collected for maintenance
releases. For maintenance, however, the
schedule milestones are somewhat different
from development. Thus data were collected
on effort hours between release start, release
contents review, release design review, release
acceptance test readiness review, and release
operational readiness review. Researchers
monitored and attempted to model the effort
that programmers, testers, and managers
expend on a maintenance release by breaking
the effort down into types of software activ-
ity, such as coding, documenting, regression
testing, and acceptance testing. Additional
activities specific to (or more prominent in)
maintenance were included, such as impact
analysis, cost benefit analysis, and error isola-
tion time.

7

The purpose of the quantitative approach was
to define and collect those measurements that
would most meaningfully characterize the
maintenance process and products. Analysis
of these data should establish a baseline model
of the current maintenance process that
answers the following questions:

1. What is the distribution of effort among
software activities during maintenance?

2. What are the characteristics of a main-
tenance release?

3. What are the characteristics of mainte-
nance errors?

4. What are the error rates and change
rates?

To achieve the maintenance study goal and t o
answer these specific questions, the following
data were collected:

1. Effort by activity (i.e., impact analy-
sis/cost benefit analysis, isolation,
change design, code/unit test, inspec-
tion/certification/consulting, integration
test, acceptance test, regression test,
system documentation, user/other
documentation, other hours)

2. Effort by type of maintenance change
(i.e., adaptation, error correction,
enhancement)

3. Error and change data

− Time spent (i.e., effort to isolate,
effort to fix)

− Source of error (i.e., previous
change, code, design, requirements,
other)

− Class of error (i.e., initialization,
logic, external interface, internal
interface, computational, or other)

4. Release estimates and actuals (i.e.,
schedule, effort, number of lines of
code, number of modules)

5. Size of software under maintenance
(lines of code)

In January 1994, the SEL began collecting
data on the eleven target maintenance proj-
ects. A new software release estimates form
was created and introduced at this time. Two
existing data collection forms (a weekly effort

form and a software change request form) had
already been in use for some time within the
organization, and were already being used by
three of the eleven target projects. These
two existing forms continued to be collected,
but now were required for all eleven target
projects. In August 1994, following comple-
tion of some of the qualitative analysis and
after discussions with a wider circle of main-
tainers, the weekly effort form was revised t o
capture effort by release and by change
request instead of merely by project. The
software activities list also was broadened.
The preliminary results of the quantitative
data analysis are summarized below.

5.1 Maintenance Effort

The average distribution of maintenance
effort by activities is presented in Figure 4.
The activities (listed above) have been
grouped into four categories (design, imple-
mentation, test, other). This figure repre-
sents the overall distribution based on total
effort expended on the eleven maintenance
projects from January through October 1994.
It includes both entire release cycles and some
partial release cycles. This distribution is
dominated by the six busiest projects, which
contributed 93% of the hours used in the cal-
culation of Figure 4. The distributions for the
individual projects vary significantly from
each other and also from this average distribu-
tion. When more data are available for com-
plete release cycles, there may be some
reduction in the variability of this distribution
among projects.

DESIGN

28%

IMPLEMENT

29%

TEST

19%

OTHER

24%

Figure 4. Maintenance Effort Distribution

8

The distribution of effort during the original
development was not available for many of
these projects. Figure 5, however, presents
the distribution of effort for the original soft-
ware development of eleven fairly typical
projects from this environment.

As illustrated by these two figures, design and
code (implement) activity constitute a larger
percentage of effort during maintenance than
during software development (57% versus
44%). This contrast reinforces the belief that
design and implementation are more costly in
maintenance than in development. There are
many possible reasons for this, for example,
the difficulty in isolating errors and the rela-
tively large overhead required to make small
code changes. One might expect that this
cost increase would be more pronounced for
error corrections than for enhancements,
because adding major enhancements is more
like doing new development work. The data
in the next section support this hypothesis,
showing greater productivity for enhance-
ments than for error corrections.

5.2 Release Characteristics

When programmers, testers, and managers
reported their time spent on maintenance
effort each week, they recorded their hours by
software activities. Prior to mid-August,
when weekly effort collection forms were
revised, they also classified their hours by the
type of change requests on which they worked

(i.e., adaptation, error correction, or
enhancement) and other hours (e.g., manage-
ment, meetings). This provided researchers
insight into the distribution of types of
changes requested and the amount of effort
each type requires.

Figure 6 presents the average distribution of
effort hours by type of change. These data
represent all the effort data for the eleven
target maintenance projects from January t o
mid-August 1994. It includes both entire
release cycles and some partial release cycles.
This distribution is again dominated by the
same six busiest projects, which contributed
93% of the hours used in the calculation in
Figure 6. The distributions for the individual
projects vary significantly from each other
and also from this average distribution. For
example, effort spent on enhancements var-
ied from 51% to 89% among the six domi-
nant projects.

Figure 7 presents the distribution of change
requests by type. The data are limited t o
completed releases from the last 2 years for
which complete change request data were
available. This amounted to nine releases
containing 83 change requests (4Êadaptations,
37Êenhancements, 42Êerror corrections). Only
five of the eleven maintenance projects under
study are represented. As more data from
complete releases become available, this dis-
tribution may change. Again there was much

DESIGN

23%

IMPLEMENT
21%

TEST

30%

OTHER

26%

Figure 5. Development Effort Distribution

ADAPTATION
5%

CORRECTION

14%

ENHANCEMENT

61%

OTHER
20%

Figure 6. Effort Distribution by
Type of Change

9

variability. The percentage of changes that
were enhancements in a release varied from
20% to 83%, excluding one release that con-
sisted entirely of error corrections.

These last two figures demonstrate that in the
FDD enhancements typically are larger than
error corrections and require more effort t o
implement. This is shown by the fact that
although the number of enhancements was
slightly smaller than the number of error cor-
rections (45% versus 50%), the ratio of effort
spent on enhancements to effort spent on
error corrections was 4.3:1.

The difference in size is even more dramatic
than the difference in effort. The
37Êenhancements in these nine releases
accounted for 96.6% of the lines of code
added, changed, or deleted, whereas the 42
error corrections accounted for only 3.1%,
for a ratio of 31:1. By comparing the size
ratio (31:1) to the effort ratio (4.3:1), the
productivity (lines of code added, changed, or
deleted per hour) is about seven times greater
for enhancements than it is for error
corrections.

5.3 Error Characteristics

The 83 change requests described above repre-
sent the original content of these nine
releases. These are all requests to change the
operational version of the software; in this
paper, these changes are referred to as opera-
tionally indigenous changes. During the
implementation of each release, however,
some errors usually are introduced by the

maintenance work. If these errors are caught
by the testers, they in turn generate additional
change requests which usually become part of
the same release delivery. These latter
changes are termed release indigenous
changes. In this study, an attempt was made
to separate these two categories of changes.
(The effort distribution in Figure 6, however,
includes effort on both operationally indige-
nous and release indigenous change requests.
Revised data collection since mid-August will
allow effort to be separated by change
request.)

The next two figures demonstrate the sources
of the errors in these nine releases, both
operationally indigenous and release indige-
nous. The 83 operationally indigenous
changes included 42 error corrections (see
Figure 8). Note that requirement specifica-
tion, code, and design each represent a signifi-
cant portion of the source of errors, 20% t o
35% each. These nine releases also included
29 release indigenous change requests, all of
which were error corrections (see Figure 9).

Note that requirement specification and
design represent much smaller portions of the
release indigenous errors than of the opera-
tionally indigenous errors. Previous change is
somewhat higher, and coding is much higher,
for release indigenous errors. The distribution
of errors found in release testing is similar t o
the distribution of errors found during accep-
tance testing of new development projects.
This similarity suggests that release testing
and development acceptance testing both

ADAPTATION 5%

ENHANCEMENT
45%

ERROR
CORRECTION

50%

Figure 7. Changes By Type

CODE 27%

DESIGN 34%
OTHER

8%

REQUIREMENT
SPECIFICATION

18%

PREVIOUS
CHANGE

13%

Figure 8. Operational Errors

10

uncover similar kinds of errors with similar
degrees of success. On the other hand, soft-
ware operations seem to uncover a different
distribution of errors, suggesting that opera-
tions are more effective than these testing
processes at uncovering certain types of
errors, such as design errors, for example.
More study is needed to explain why testing
and operations should have such different
error detection distributions.

5.4 Error and Change Rates

When the error rate was analyzed for opera-
tionally indigenous errors, errors were nor-
malized by both the size of the project
(SLOC) and the time period during which they
were detected. This adjustment was made for
the following reasons: It was expected that,
all other things being equal, a larger piece of
software would tend to have more errors than
a smaller piece of software, so errors/SLOC
would be a more meaningful measure of soft-
ware quality than raw errors. It was also sus-
pected that, all other things being equal, the
piece of software that had been exercised
operationally for a longer time probably
would have more errors uncovered. When
comparing error rates for many projects, this
dual normalization resulted in more uniform
error rates across projects, more so than when
either normalization was done separately, or
when no normalization was performed at all.

Error rate data were available for ten of the
eleven projects in this study, reaching back
2Êyears for most projects. Analysis of the
error rates for these ten projects over the last
2 years (less than 2 years for some of the
newer projects) resulted in a mean value of
11Êerrors per 100ÊKSLOC per year (minimum
5, maximum 32). Project size ranged from 42
to 263 KSLOC.

Release indigenous errors are those that are
introduced by the maintenance process. I t
was expected that the more code that was
modified in a release, the more errors were
likely to be introduced. Therefore release
indigenous errors were normalized by the
modified KSLOC in the original content of
the release. Modified KSLOC is the sum of
KSLOC added, changed, and deleted. For the
nine maintenance releases mentioned above,
the mean error rate for release indigenous
errors was 0.8Êerrors per modified KSLOC
(minimum 0, maximumÊ6.9). Correcting the
release indigenous errors required more lines
of code to be added, changed, or deleted before
delivering the release. The overall ratio of
this additional modified code to the original
modified code for the nine was 2.5% [25 addi-
tional modified SLOC (minimum 0, maximum
172) per original modified KSLOC].

6. Lessons Learned

This study demonstrated the importance of
closely consulting with the software project
personnel (here maintainers) when carrying
out any software development study. Both
the researchers and the maintainers benefited
by the close working relationship on this
study. The researchers gained a better under-
standing of the difficulties and peculiarities of
the maintenance process; the maintainers
gained some insights into the difficulties of
the data definition, collection, and analysis
process that leads to useful models.

The qualitative analysis that was done for four
of the maintenance projects in this study
helped ensure that the maintainers were inti-
mately involved in the baselining process.
This analysis also helped the researchers t o
rethink and to begin to redefine the measure-
ment program. For example, weekly person-
nel effort data is now grouped by release and

CODE
63%

DESIGN
10%

OTHER
7%

REQUIREMENT
SPECIFICATION

3%
PREVIOUS
CHANGE

17%

Figure 9. Release Errors

11

by software change, instead of merely by
project. Researchers have also redefined and
expanded the list of software activities t o
which maintainers apportion their effort. In
addition, the qualitative analysis has suggested
the usefulness of reexamining error taxono-
mies, which the study team hopes to address
at a later date.

As the researchers studied the release process,
it became evident that there was a need to dif-
ferentiate between those errors that were
operationally indigenous and those errors
that were release indigenous. One obvious
reason was that reduction of release indige-
nous errors is an important improvement goal
for maintenance. A second reason is that
each of these error sets has something impor-
tant to say about the maintenance process. In
trying to resolve operationally indigenous
errors (and adaptations and enhancements),
maintainers sometimes introduce release
indigenous errors. When such errors are
introduced, both the original change request
and the change request for the resulting
release indigenous error must be examined t o
learn how effective the maintenance process
is and how it might be improved.

Although the definitions given above for
these terms imply that the two error sets are
distinct, in practice, the actual error popula-
tions do not fit the definitions one hundred
percent. For example, the set that this study
termed the operationally indigenous error set
should include only those errors that were
introduced during the original development of
the software. In reality, this set may also
include a few errors that were introduced dur-
ing maintenance, but which were not
identified until the maintenance release
became operational. The release indigenous
error set should include only errors that were
introduced by the maintenance process. In
reality, this set may contain some errors that,
although caught by release testers, were in fact
residing in the operational software and were
not new to the maintenance release. Despite
these imperfections, there was enough consis-
tency in each set to treat them separately.

In characterizing the size of a release, some
measure other than the total number of
changes is necessary, because some changes

(especially enhancements) tended to be more
complex and time consuming than others.
For this study, the total modified lines of code
(new SLOC + changed SLOC + deleted SLOC)
for all changes was used as the measure of
release size.

The release characterization demonstrated
that, on average, FDD releases are composed
of about an equal number of error corrections
and enhancements, but that the enhancements
require significantly more effort and far more
code. Comparing this effort and size data
between enhancements and error corrections
revealed that the productivity for enhance-
ments was approximately seven times greater
than for error corrections. Why this is so,
and whether it is good or bad, remains to be
seen. The characterization of maintenance
errors revealed surprisingly few errors attrib-
uted to requirement specifications or t o
design. This deserves further investigation,
especially since the qualitative analysis sug-
gested that requirements deficiencies on soft-
ware change requests were a problem. The
preliminary characterization of error rates
resulted in two different ways to normalize
errors, one appropriate for operationally
indigenous errors and another appropriate for
release indigenous errors.

Qualitative analysis suggested that the FDD
needs to provide better guidelines for content
and format of change requests and release
documents. The FDD also needs to enforce
stricter adherence to the maintenance proc-
ess, especially attendance at review meetings.
The preliminary quantitative analysis pro-
vided many insights into FDD maintenance
but also spawned as many new questions. The
preliminary effort distributions indicated that
design and implementation require more
effort in maintenance than they do in new
development. Exactly why this is so is not
clear at this time.

7. Future Study of Software
Maintenance in the SEL

The combination of qualitative and quantita-
tive analysis methods has provided a compre-
hensive look at the software maintenance
process in the FDD. From this researchers
have made a good start at baselining this

12

process. Preliminary quantitative data analy-
sis is based on only nine complete mainte-
nance releases. More releases need to be
studied. Also baseline models need to be
extended to include an understanding of main-
tenance cost and cost estimation, plus a better
understanding of error rates. Beyond this,
future maintenance study activities need t o
provide a more complete understanding of the
testing process and the inspection and certifi-
cation process. The impact of software
development practices on later software
maintenance also must be measured.

The FDD has recently embarked on a major
effort to port most of its software from IBM
mainframes to UNIX workstations. This
effort will result in a great many maintenance
change requests of the adaptation type. The
current study needs to analyze whether and
how it should adapt itself to make the most
use of the data that this transition will
generate.

Once the understanding phase of the current
study is completed, the assessing phase will
begin. Researchers will design and carry out
experiments through which they will be seek-
ing answers to these questions and others:

1. How might we know when a product has
outlived its usefulness?

2. What is the Òright sizeÓ for a mainte-
nance release?

3. Can we predict the most error-prone
modifications, and if so how?

4. How can we more accurately estimate
the cost of software changes?

This application of the QIP has expanded the
SELÕs understanding of the maintenance
process and product in this environment. Fur-
ther baselining, experimentation, and research
should lead to recommendations for
improvements to the maintenance process
that can be packaged and instituted in the
FDD.

References

1. McGarry, F., G. Page, V. R. Basili, et al., An
Overview of the Software Engineering Labora-
tory, SEL-94-005, December 1994.

2. Basili, V. R., ÒQuantitative Evaluation of Soft-
ware Engineering Methodology,Ó Proc. of the
First Pan Pacific Computer Conference,
Melbourne, Australia, September 1985 [also
available as Technical Report, TR-1519,
Department of Computer Science, University of
Maryland, College Park, July 1985].

3. Basili, V. R., G. Caldiera, F. McGarry, et al.,
ÒThe Software Engineering Laboratory Ð An
Operational Software Experience Factory,Ó
International Conference on Software Engin-
eering, May 1992, pp. 370-381.

4. Briand, L., V. R. Basili, Y. M. Kim, D.
Squier, ÒA Change Analysis Process to Charac-
terize Software Maintenance Projects,Ó Interna-
tional Conference on Software Maintenance
1994, Victoria, British Columbia, Canada,
September 1994.

